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Mathematical crystallography is the branch of crystallography dealing

specifically with the fundamental properties of symmetry and periodicity of

crystals, topological properties of crystal structures, twins, modular and

modulated structures, polytypes and OD structures, as well as the symmetry

aspects of phase transitions and physical properties of crystals. Mathematical

crystallography has had its most evident success with the development of the

theory of space groups at the end of the XIX century; since then, it has greatly

enlarged its applications, but crystallographers are not always familiar with the

developments that followed, partly because the applications sometimes require

some additional background that the structural crystallographer does not always

possess (as is the case, for example, in graph theory). The knowledge offered by

mathematical crystallography is at present only partly mirrored in International

Tables for Crystallography and is sometimes still enshrined in more specialist

texts and publications. To cover this communication gap is one of the tasks

of the IUCr Commission on Mathematical and Theoretical Crystallography

(MaThCryst).

1. Introduction

Mathematical Crystallography is the title of a classical text-

book by Hilton (1903), which represented one of the first

efforts of providing a comprehensive presentation of the

theory of symmetry in crystals in the English language.

Hilton’s book was mainly devoted to morphological symmetry

and lattice symmetry, with some excursions into the physical

properties of crystals and the theories of crystal growth.

Nowadays, the field of mathematical crystallography has

greatly enlarged its horizons: not only because of its devel-

opment towards higher-dimensional crystallography (Yama-

moto, 1996) and non-Euclidean spaces (Robins et al., 2004) but

also because different types of symmetry relations (such as

partial symmetry acting on a subspace of the crystal space and

polychromatic symmetry describing physical properties of

crystals and mapping of individual orientations in twins) have

been discovered which naturally fell into the field of mathe-

matical crystallography. Symmetry, however, is far from

exhausting the targets of mathematical crystallography, which

also investigates the crystal-chemical problems related to the

topology of crystal structures by means of mathematical tools,

such as graph theory, whose relation with crystallography has

been recognized relatively recently.

The basis of the theory of symmetry in crystals, and thus of

crystallography itself as a modern science, is found in miner-

alogy. The term ‘crystallography’ was introduced by Cappeller

(1723) but it was with the studies by Romé de L’Isle (1772,

1783), Bergman (1773), Haüy (starting from 1784) and

Delafosse (1840) that a new route opened towards a

systematic derivation of the properties of periodicity and

symmetry of crystals, developed especially in France (e.g.

Bravais, 1850; Mallard, 1879; Friedel, 1926) and in Germany

(e.g. Bernhardi, 1808a,b,c; Weiss, 1809a,b, 1815; Neumann,

1823; von Groth, 1895). The modern notation of lattice planes

and crystal faces is due to the British school (Whevell, 1825;

Miller, 1839). The theory of space groups was finally devel-

oped by Fedorov (1890), Schoenflies (1891) and Barlow (1894)

(for a recent historical review, see Lalena, 2006). A systematic

path thorough space groups was presented by Wyckoff (1930),

in what can be considered the ancestor of Vol. A of Interna-

tional Tables for Crystallography. Nowadays, eight volumes of

International Tables are published, which may give the

impression that exhaustive information on all aspects of

crystallography is available there. Actually, some aspects of

crystallography, and especially of mathematical crystal-

lography, are inadequately presented in International Tables,

and several topics are still quite unknown to a large number of

structural crystallographers. This partly comes from the use of

concepts and language that are unfamiliar to non-specialists.

Some efforts to provide the necessary introduction have been

made, for example by Hahn & Wondratschek (1994) and with

the production of a series of Teaching Pamphlets freely

available from the IUCr website (http://www.iucr.org/iucr-top/

comm/cteach/pamphlets.html) and, more recently, with the

launch of the IUCr Online Dictionary of Crystallography

(http://reference.iucr.org/dictionary/Main_Page). At the same

time, crystallography, a victim of its own successes, is often



considered as a diffraction technique rather than a multi-

disciplinary science.

The purpose of this article on Mathematical Crystallography

for this Special Issue celebrating the 60th Anniversary of the

IUCr is to present some of the topics that are often over-

looked by the structural crystallographer and to give him a key

to navigate the literature on the subjects, as well as to present

some hot topics in mathematical crystallography which are

currently under-represented in International Tables. Needless

to say, there is no aim at compiling an exhaustive review: the

topics selected for this article are among those of central

interest to the MaThCryst commission.

Mathematical methods and probabilistic theories used in

the solution and refinement of crystal structures from

experimental data are addressed by the IUCr Commission on

Computational Crystallography and are not treated in this

article.

2. Coincidence and symmetry operations acting on a
component of the crystal space

The symmetry operations of a space group are isometries

operating on the whole crystal space and are also called ‘total

operations’ (Dornberger-Schiff, 1964a) or ‘global operations’

(Sadanaga & Ohsumi, 1979; Sadanaga et al., 1980). These are

the operations that normally come to mind when one thinks of

the symmetry of a crystal. The fact that they act on the whole

crystal space may sound an obvious prerequisite for any

coincidence operation in a crystal structure. This is not true

because more generally a coincidence operation can act on

just part of the crystal space, which we will call a ‘component’,

and bring it to coincide with another component. As a

consequence, one is led to consider a much wider category of

coincidence operations, which nevertheless play an important

role in some types of crystal structure.

Let us imagine subdividing the crystal space into N

components S1 to SN, and let �(Si)! Sj be a coincidence

operation transforming the component i into the component j.

Such an operation in general is not a coincidence operation of

the whole crystal space and therefore is not one of the

operations of the space group of the crystal. It is called a

partial operation and in general it is not required that it brings

Sj back onto Si: more strongly, �(Sk) in general is not defined

for any component k different from i and therefore a partial

operation is not necessarily a symmetry operation. From the

mathematical viewpoint, partial operations are space-

groupoid operations, in the sense of Brandt (1927).1

When i = j, i.e. when the operation is �(Si)! Si and brings

a component to coincide with itself, the partial operation is of

special type and is called local (Sadanaga & Ohsumi, 1979;

Sadanaga et al., 1980). A local operation is in fact a symmetry

operation, which is defined only on a part of the crystal space:

local operations may constitute a subperiodic group (Kopský

& Litvin, 2002), and in particular a diperiodic group (Holser,

1958) when Si corresponds to a layer.

On the basis of these very general definitions, we can briefly

analyse some examples that will make clear the role of partial

and local operations in describing and rationalizing a crystal

structure.

2.1. Partial and local operations in ‘supersymmetric struc-
tures’

About 8% of crystal structures contain more than one

formula unit in the asymmetric unit (Z0 > 1). In the case of

molecular crystals, the crystallization mechanism and the

structural relations among the molecules in the asymmetric

unit is the subject of extensive research because of its direct

applications in supramolecular chemistry and crystal engi-

neering (see e.g. Steed, 2003). The role of pseudosymmetry

(approximate symmetry) has been emphasized but the

panorama obtained is not always fully satisfactory. As a matter

of fact, the role of partial and local operations is of paramount

importance.

Molecular crystals characterized by Z0 > 1 have been called

‘supersymmetric structures’ by Zorkii (1978) because the

independent molecules in the asymmetric unit can be brought

to more or less exact superposition by a screw rotation about a

direction relating the molecules, and this direction has some

special orientation with respect to the lattice basis. The

‘supersymmetry operations’ evidently act only on part of the

crystal space and may be either local or partial, depending on

whether a component is mapped to itself or to a different

component. The cases of picric acid and phenol were analysed

by Sadanaga et al. (1980). In the first case, two molecules of

picric acid exist in the asymmetric unit of space group Pca21,

a = 9.254 (2), b = 19.127 (4), c = 9.704 (2) Å, which has a

pseudo-tetragonal mesh in (010) (Duesler et al., 1978). The

two molecules in the asymmetric unit are related by a pseudo

partial 42 axis parallel to the crystallographic b axis. Fig. 1

shows the two molecules in the unit cell in the original

orientation (top) and after �90� rotation about the crystal-

lographic b axis (centre and bottom). Let us indicate by MN,#

the molecule No. N (N = 1 or 2) after a rotation of #� (# = 0,

+90 or �90�). M2,+90 has almost the same orientation as M1,0,

whereas no relation can be found between M1,+90 and M2,0. In

the same way, M1,�90 has almost the same orientation as M2,0

whereas no relation can be found between M2,�90 and M1,0. We

can therefore conclude that a (pseudo) partial 42 axis exists

parallel to b, as shown in Fig. 2, where the three parts of Fig. 1

are overlapped. It is partial because 4þ2 acts on M1,0 producing

M2,+90, but it does not act on M2,0. At the same time, 4�2 acts on

M2,0 producing M1,�90 but it does not act on M1,0. The pseudo-

character of this partial coincidence operation is shown by the

imperfect overlap of the molecules in Fig. 2. Fig. 3 (modified

after Sadanaga et al., 1980) shows the idealized unit-cell

contents, where each molecule of picric acid is represented by

a paper kite, the smaller higher-angle side indicating that the

corresponding part of the molecule is directed towards the

observer. Corresponding molecules along the c axis in the
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(1937), namely a set on which binary operations act but neither the identity
nor the inversion are included, is nowadays called a magma (see e.g. Bourbaki,
1998).



same row differ in their y coordinate by about 3
4 (row I) or 1

4

(row II). The symmetry operations of the space group map

solid kites on one side and dashed kites on the other side. The

pseudo partial [.42.] rotation maps a solid kite onto a dashed

kite. The combinations of these two types of operations map a

solid kite to a dashed kite located in different positions in the

(010) projection: these are partial pseudo-[.41.] and partial

pseudo-[.43.] axes. These partial operations can be seen as

space-groupoid operations or, alternatively, as cosets of the

space group of the crystal (Grell, 1998) obtained by composing

the [.42.] partial operation with the operations of the space

group. However, as seen above, [.42.] and [.4�1
2 .] do not possess

the same domain and therefore they cannot be composed with

themselves, as would be the case of a local operation. The

crystal structure as a whole has to be described in terms of

groupoids instead of groups, although each operation in itself

is a group operation, namely from the group generated by the

space group Pca21 and the 42 operation.

In the case of phenol (Fig. 4), three molecules exist in the

asymmetric unit of the space group, which is of type P21. The

lattice parameters (c-unique setting) are a = 6.050 (1), b =

8.925 (2), c = 14.594 (3) Å, � = 90.36 (2)� (Zavodnik et al.,

1988). The structure is thus metrically pseudo-orthorhombic.

The three molecules in the asymmetric unit are related by a

pseudo local 32 axis parallel to the crystallographic a axis. The

structure, however, is not pseudo-hexagonal because, despite

the almost exact orthohexagonal relation between the b and c

parameters (c ’ b31/2), the lattice type is primitive and not

A-centred, as would be required to obtain a pseudo-hexagonal

metric symmetry. In this case, the ‘supersymmetry axis’ is local

because it acts on the same part of the crystal space, defined by

the three phenol molecules in the asymmetric unit. Both the

direct and the inverse operations are defined. The pseudo-

character of the operation is shown by the x coordinates in Fig.

4, which are slightly displaced with respect to the ideal �a/3

screw motion.

2.2. Partial and local operations in OD structures

The OD theory (Dornberger-Schiff, 1964a, 1966) specifi-

cally deals with structures in which partial operations act on
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Figure 2
Superposition of the portions of Fig. 1 showing the existence of a pseudo partial 42 axis along the crystallographic b axis.

Figure 1
Projection of the unit cell of picric acid, showing the two molecules in the
asymmetric unit. Top: projection along the �a axis, taken as original
orientation. Centre: after +90� rotation about the b axis (projection along
the �c axis). Bottom: after �90� rotation about the b axis (projection
along the +c axis).



layer structures, although extensions to rod and block struc-

tures have been suggested too (see e.g. Dornberger-Schiff,

1964b; Belokoneva, 2005). The OD theory distinguishes two

types of partial operations: k, which transform a layer into

itself, and r, which transform a layer into an adjacent layer

(Dornberger-Schiff & Grell-Niemann, 1961). k operations

correspond to local operations in Sadanaga et al. (1980); r
operations are partial operations as defined above.

OD structures are polytypic, namely structures built by

stacking layers in different orientations/positions; the opposite

may or may not be true depending on the degree of ideal-

ization one adopts in describing the layer structure (for a

critical discussion, see Zvyagin, 1993). OD stands for order–

disorder, has no relation with the chemical order–disorder

phenomena but indicates that the stacking of layers may

produce both periodic (ordered) and non-periodic (disor-

dered) structures. The crystal chemical reason for polytypism

is that adjacent layers (two-dimensionally periodic units) can

be linked to each other in more than one translationally non-

equivalent way, which however preserve the nearest-neigh-

bour relationships. The operations interchanging the layers of

a pair of adjacent layers are partial operations: they act on a

part of the crystal space (consisting of the layer pair) and, in

general, they are not the same for each layer pair. Moreover,

the local k operations � mapping layer i onto itself –

�(Si)! Si – and �0 mapping layer j onto itself are, in general,

not the restriction of a common operation mapping both

components. In the OD language, one says that these opera-

tions do not have a ‘continuation’ in the rest of the crystal

structure: � acts on Si but not on Sj, �0 acts on Sj but not on Sk,

and so on.

It must be emphasized that the choice of layers is made

precisely to locate the components of the crystal space on

which the local operations act and the layers located in this

way do not necessarily coincide with the classical crystal-

chemical layers defined by cleavage properties. This is why one

speaks of ‘OD layers’, to emphasize the choice criterion, even

in the cases when the result coincides with the crystal-chemical

layers. Moreover, there may exist more than one possibility of

dividing the crystal space into layers so that local operations

are defined: this is why one says that the choice of OD layers is

in general not unique (Grell, 1984).

Among the infinitely many possible polytypes, those in

which not only the pairs but also triples, quadruples etc. of

layers are geometrically equivalent (or, when this equivalence

is not possible, the number of different triples etc. is minimal)

are called maximum degree of order (MDO) polytypes. In a

class of compounds, they are normally the most frequent

polytypes, a fact suggesting that the geometrical equivalence

of layers is actually somehow related to a thermodynamic

stability, although it is hardly conceivable that long-range

interactions like those existing between the second or third

layer may play a fundamental role in discriminating the

stability of different polytypes.

The OD interpretation of polytypic structures is not only an

elegant way of rationalizing a series of structures within a

general framework but also an extremely powerful way of

interpreting the diffraction pattern of these structures and to

model unknown structures. This becomes possible once the

concept of family is introduced.

If one takes two or more identical copies of the same

polytype, translated by a vector corresponding to a submul-

tiple of a translation period – what is commonly called a

superposition vector – a fictitious structure is obtained, which

is termed a superposition structure. Among all possible

superposition structures, one plays a special role: it is the one

in which the superposition vectors correspond to all possible

positions of each layer. It is called a family structure and it

exists only if the shifts between adjacent layers are rational, i.e.

if they correspond to a submultiple of lattice translations.

Because it is built by superposing all possible positions of a
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Figure 3
The idealized unit-cell content of picric acid, where each molecule of
picric acid is represented by a paper kite, the smaller higher-angle side
indicating that the corresponding part of the molecule is directed towards
the observer.

Figure 4
The structure of phenol in P1121 seen along the [100] axis (� = 90.36�).



layer, the family structure is common to all polytypes of the

same family (Dornberger-Schiff, 1964a; Ďurovič, 1994). From

a group-theoretical viewpoint, building the family structure

corresponds to transforming (‘completing’) all the partial

symmetry operations of a space groupoid into the global

symmetry operations of a space group (Fichtner, 1977, 1980).

From the symmetry viewpoint, pairs of adjacent layers remain

geometrically equivalent in all polytypes of the same family.2

The OD character of a polytype appears also in its

diffraction pattern. The group of translations of the reciprocal

lattice of a given polytype can be decomposed into a subgroup

of translations (family sublattice), which corresponds to the

Fourier transform of the family structure and one or more

cosets. The family sublattice is again common to all polytypes

of the same family. This means that all polytypes of the same

family, normalized to the same volume of scattering matter,

have a weighted reciprocal sublattice in common.3 The

diffractions that correspond to the family sublattice are

termed family diffractions (or, more commonly, family reflec-

tions). When indexed with respect to the basis vectors of any

of the polytypes of the same family, the family sublattice may

show several non-space-group absences, which is a clear

indication of the existence of partial symmetry (space-

groupoid) operations. The family reflections are always sharp,

even in the case of non-periodic (disordered) polytypes. In

fact, in the family structure, all the layer-stacking operations

are completed to global operations so that the family struc-

ture, as well as its Fourier transform, is common to both

periodic and non-periodic polytypes of the same family

(Ďurovič & Weiss, 1986; Ďurovič, 1997, 1999). The remaining

diffractions, which correspond to the cosets of the weighted

reciprocal lattice with respect to the family sublattice, are

termed non-family diffractions (non-family reflections, char-

acteristic reflections) and are instead typical of each polytype:

they can be sharp or diffuse, depending on whether the

polytype is ordered or not.

When inspecting the diffraction pattern of an unknown

structure, the regular sequence of reciprocal-lattice rows

showing and not showing non-space-group absences is a

strong indication of the OD character of the structure. The

disorder in the stacking sequence appears as streaking along

the non-family rows; the coexistence of reciprocal-lattice rows

that are not affected by streaking (family rows) suggests at a

glance the OD character. Frequent twinning may also indicate

an OD character. Inspection of the family rows gives infor-

mation about the family structure. If one or more polytypes of

this family are already known, then the structure of the

layer(s) is known too and the problem of solving the structure

reduces, for ordered (periodic) polytypes, to that of obtaining

the stacking sequence from the non-family rows. For simple

polytypes, like those based on the symmetric packing of

spheres, the task may be relatively easy. For more complex

structures, special techniques have been developed (see e.g.

Takeda, 1967).

3. Crystallographic orbits, point configurations and
lattice complexes

The symmetry of an atomic structure can be seen as the

intersection of the symmetries of the spatial distribution of

each crystallographic type of atom. The structure of a crystal

containing N crystallographically different types of atoms can

be ideally decomposed into N distributions of points in space,

similar to what is commonly done in the study of crystal

morphology, when the external shape of a crystal is analysed in

terms of its face forms. Each point, under the action of the

symmetry operations of the space group G of the crystal,

generates an infinite set of symmetrically equivalent points,

called a crystallographic orbit (Matsumoto & Wondratschek,

1979, 1987). The space group G is called the generating space

group of the orbit. Three features of each crystallographic

orbit have to be considered: the inherent symmetry (eigen-

symmetry) E, which may coincide with G or be a supergroup

of it; the site-symmetry group S; and the translation subgroup

T. The intersection of the inherent symmetries Ei, i = 1, N, of

the N crystallographic orbits gives back the space group G of

the crystal.

A space group G is an infinite group that can be seen as an

extension of an infinite group of translations T, representing

the lattice, by a point group P. P then is isomorphic to the

factor group G/T 4 (Hahn & Wondratschek, 1994).

The site-symmetry group S of a Wyckoff position is the

subgroup of G that maps a point of that position onto itself: in

the language of abstract algebra, it is the stabilizer of the point.

The site-symmetry group Smax of the highest-symmetry lowest-

multiplicity Wyckoff position is isomorphic with P for

symmorphic space groups or with a subgroup of P for non-

symmorphic space groups. The site-symmetry groups of the

other Wyckoff positions are subgroups of Smax.

The inherent symmetry E of a crystallographic orbit corre-

sponding to a Wyckoff position in G is at least G. If G = E, the

orbit is called a characteristic crystallographic orbit, otherwise

it is called a non-characteristic crystallographic orbit. G can be

a translationengleiche subgroup of E (same translation group

T: G <
t

E, TG = TE): the atoms sitting in the corresponding

Wyckoff position contribute to the diffraction pattern a

symmetry higher than that from the whole crystal. G can also

be a klassengleiche subgroup of E (same geometric crystal

class: G <
k

E, TG < TE): E then contains translations additional

to those of the generating space group G and the orbit is called

an extraordinary crystallographic orbit.5 The atoms sitting in a

Wyckoff position corresponding to an extraordinary orbit do
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2 The geometrical equivalence must be fulfilled not necessarily by the real
layers but by their archetypes, i.e. the slightly idealized layers to which the real
layers can be reduced by neglecting some distortions occurring in the true
structure. The notion of polytypism becomes thus unequivocal only when it is
used in an abstract sense to indicate a structural type with specific geometrical
properties.
3 The weighted reciprocal lattice is obtained by assigning to each node of the
reciprocal lattice a ‘weight’ that corresponds to F(hkl) (Shmueli, 2001).

4 The translation subgroup T is a normal subgroup of G: the factor group or
quotient group G/T is the set of all cosets of T in G.
5 The role of extraordinary orbits was first addressed by Sándor (1968), who
suggested extending the concept of ‘special positions’ to positions having
translational symmetry higher than that of the general position.



not contribute to some classes of reflections: this information

appears under the ‘special reflection conditions’ tabulated in

International Tables for Crystallography (2002), Vol. A (ITA

for short), but, as we are going to show, it is actually incom-

plete. The case when G is a general subgroup of E (G < E)

includes the features of both G <
t

E and G <
k

E.

The concept of crystallographic orbit is closely related to

that of point configuration but differs from it by the fact that

point configurations are detached from their generating space

groups. As said above, from a given position in a certain space

group G, a crystallographic orbit is obtained by the actions of

the symmetry elements of G. The result is a spatial distribution

of points with an inherent symmetry E, which is a fundamental

feature of the spatial distribution of points and does not

depend on the space group having generated it. This same

spatial distribution may occur in space groups of different type

and takes the name of point configuration. There exists

evidently a surjection of point configurations onto crystal-

lographic orbits because a crystallographic orbit depends on

the space group G where it occurs and, consequently, corre-

sponds to a well defined site-symmetry group, whereas point

configurations do not. In other terms, a set of points is called a

point configuration if there exists at least one space group that

generates it as an orbit of one of its points. The relation

between crystallographic orbits and point configurations in

point space has a close analogy in vector space to the relation

between the face form attached to the point group that has

generated the form and the face form detached from its

generating point group. There again, the same form may occur

in different point groups. For example, the tetragonal prism

has inherent symmetry E = 4/mmm and may occur in 4/mmm,

where it is a characteristic form, but also in all the other six

tetragonal point groups, where it is a non-characteristic form.

In each individual space group and in all space groups of

that type, there exist infinitely many point configurations.

They can however be grouped into types, which are called

lattice complexes. The concept of lattice complex is actually

older than that of crystallographic orbit, having been intro-

duced by Niggli (1919) and fixed by Hermann (1935). A

rigorous definition, however, was provided much later by

Fischer & Koch (1974) and by Zimmermann & Burzlaff

(1974). The same lattice complex may occur in different types

of space groups of the same crystal family. For example, the set

of six points �x, 0, 0; 0,�x, 0; 0, 0,�x in Pm�33 corresponds to

the Wyckoff position 6e of site-symmetry group mm2.. but it

occurs also in Pm�33m where it corresponds again to the

Wyckoff position 6e, which now has site-symmetry group

4m.m. The inherent symmetry E of this set of points, which

forms the vertices of an octahedron around the sites of a cubic

primitive lattice, is Pm�33m independently of the space group G

where it occurs. Taken as such, it defines a point configuration

and Pm�33m is the characteristic space-group type of the point

configuration (G = E). When instead it is considered together

with the space group G from which it has been generated, it is

a crystallographic orbit. Evidently, 6e in Pm�33m is a char-

acteristic orbit because the inherent symmetry E coincides

with the generating group G. Instead, in Pm�33, 6e is a non-

characteristic orbit because the inherent symmetry (Pm�33m) is

higher than the generating group (Pm�33). It is not an extra-

ordinary orbit, however, because Pm�33m contains no addi-

tional translations. In the lattice-complex approach, the

phenomenon of extraordinary orbits is treated in analogy to

the concept of limiting forms in crystal morphology: a lattice

complex L1 is called a limiting complex of another lattice

complex L2 if the set of its point configurations forms a (true)

subset of the set of point configurations of L2. In this sense, the

lattice complex of all cubic primitive lattices is a limiting

complex of the set of all tetragonal primitive lattices.

The contribution of atoms in a primitive cubic lattice

complex to the diffraction pattern of the crystal corresponds

always to that of Pm�33m. Besides, when this lattice complex

defines a superlattice with respect to the axial setting of the

space group – in other words, it forms an extraordinary orbit in

G – special reflection conditions occur too. This becomes clear

when the example of the primitive cubic lattice complex is

worked out.

The primitive cubic lattice complex occurs, quite obviously,

in Pm�33m, which is the characteristic space group of this lattice

complex. It occurs in the Wyckoff positions 1a and 1b, which

differ by a shift of 1
2

1
2

1
2. In this space-group type, it does not

define any superlattice and no special reflection conditions are

observed. The contribution to the diffraction symmetry is that

of Pm�33m. In the language of the crystallographic orbits, this

lattice complex corresponds to two characteristic orbits.

The primitive cubic lattice complex occurs also in P�443m,

P432, Pm�33 and P23, again corresponding to the Wyckoff

positions 1a and 1b. The situation is essentially the same as in

Pm�33m but, because the inherent symmetry is higher than the

space group, the diffraction symmetry from atoms in this

lattice complex is higher than that from the whole crystal. In

the language of the crystallographic orbits, this lattice complex

corresponds here to two non-characteristic (G < E), non-

extraordinary (same translation lattice: TG = TE) orbits.

The primitive cubic lattice complex occurs also in Im�33m,

Fm�33m, I432, Im�33 (Wyckoff position 8c), Fm�33c, F�443c and Ia�33
(Wyckoff positions 8a and 8b). In all these space-group types,

the primitive cubic lattice complex corresponds to a primitive

superlattice with halved translations along each of the three

translation directions: for this reason, the symbol P2 is used

(cf. Chapter 14 in ITA). As a consequence, atoms in this lattice

complex only contribute to diffractions with even values of h,

k or l. In the language of the crystallographic orbits, this lattice

complex corresponds here to extraordinary orbits (G < E,

TG < TE).

Although the above example seems well representative of

how lattice complexes can occur in different space groups and

of the consequences on the diffraction symmetry, there is

another, even more specialized, category, which is not ex-

plicitly taken into account in ITA. Wyckoff positions with one

or more free coordinates can be specialized by making these

free coordinates take a rational value. This specialization may

result in switching to another Wyckoff position, which there-

fore has a different inherent symmetry and a different site-

symmetry group. If, however, the result remains in the same
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Wyckoff position but the inherent symmetry E of the orbit is

enhanced, two cases have to be distinguished: (i) the orbit is

extraordinary because it defines a (different) superlattice with

respect to G, to which additional special reflection conditions

necessarily correspond; (ii) the orbit shows no additional

translations, i.e. it is non-extraordinary. Then it nevertheless

may give rise to additional reflection conditions, although not

necessarily. These additional conditions can be obtained, e.g.

with the aid of the list in Engel et al. (1984). Two examples will

make the situation clear.

(I) The space-group type P�443m contains nine special posi-

tions, none of which corresponds to special reflection condi-

tions. This is no longer true when one assigns particular values

to one or more free coordinates, as we are now going to show.

The position 12h x 1
2 0 can be specialized by making x take

the value 1
4. The coordinates 1

4
1
2 0 still correspond to the

Wyckoff position 12h but now the inherent symmetry is E =

Im�33m. Atoms in this extraordinary orbit do not contribute to

diffractions with odd values of h + k + l: these special reflection

conditions do not appear in ITA.

The position 4e xxx can be specialized by making x take the

value 1
4 or 3

4. This results in two non-equivalent (in this space-

group type) occurrences of a lattice complex with inherent

symmetry E = Fm�33m. Atoms in these extraordinary orbits do

not contribute to diffractions with odd values of h + k, h + l or

k + l: these special reflection conditions do not appear in ITA.

(II) In the space-group type I213, position 8a xxx, the

parameter x may be specialized to x = 1/8. The resulting orbit

is non-characteristic and non-extraordinary. It has the

inherent symmetry E = I4132 with the additional conditions

hkl: h = 2n + 1 or h, k, l = 4n + 2 or h, k, l = 4n.

The symmetry of the diffraction pattern from a crystal is

finally the intersection symmetry of the diffraction symmetry

from each lattice complex (the effect of Friedel’s law, when

respected, can be taken into account as the union of an

inversion centre and the diffraction symmetry of the crystal).

This makes a close parallel with the situation in the direct

space, where the space group of the crystal corresponds to the

intersection of the inherent symmetries of the lattice

complexes occupied by the atoms in the crystal.

The occurrence of limiting-complex relations between

space groups of different crystal families depends on the

realization of special metric conditions and may be coupled

with special coordinates. This means that only part of the

space groups within one type contains such non-characteristic

orbits. A striking example is given by space groups of type

P212121, position 4a xyz. Here, simultaneous specialization of

the lattice parameters to a = b = c and of the coordinates to x =

y = z = 1/8 result in a non-characteristic (non-extraordinary)

orbit with inherent symmetry E = P4332 and the complicated

addition reflection conditions for h, k, l (permutable): h, k =

2n + 1 or h = 2n + 1, k = 4n and l = 4n + 2 or h, k, l = 4n + 2 or

h, k, l = 4n. So far such relations have been systematically

worked out only for the cubic limiting complexes of tetragonal

and trigonal lattice complexes (Koch & Fischer, 2003; Koch &

Sowa, 2005). It must be noticed that these additional reflection

conditions are valid for all space groups of type P212121 only if

x = y = z = 1/8. This is because structure factors are inde-

pendent of the cell metric.

When heavy atoms occupy non-characteristic orbits and

light atoms are in characteristic orbits, the symmetry of the

diffraction pattern is closer to that of a higher-space-group

type and this pseudosymmetry makes the refinement more

complex. Furthermore, when the positions occupied by heavy

atoms correspond to extraordinary orbits, some classes of

diffractions receive contributions only from light atoms, and

in the diffraction pattern one can see strong diffractions,

contributed by all atoms, and weak diffractions, contributed by

light atoms only.

The literature on the subject is huge. Fundamental texts on

crystallographic orbits are: Wondratschek (1976), Lawrenson

& Wondratschek (1976), Matsumoto & Wondratschek (1979,

1987) and Engel et al. (1984). Chapter 8 in ITA introduces the

concept of crystallographic orbits, without making a detailed

analysis, however. An extension to polychromatic orbits has

been introduced by Roth (1988). About point configurations

and lattice complexes, besides the literature quoted above, the

book by Fischer et al. (1973) and Chapter 14 in ITA cover the

subject with full details. An exhaustive discussion on the

difference between crystallographic orbits and point con-

figurations can be found in Koch & Fischer (1985). The

application of lattice complexes to the classification of crystal

structures is treated in several articles, for example Hellner

(1965).

4. Normalizers

Normalizers are a mathematical concept extensively used in

the solution of crystallographic problems, such as the choice of

the origin and of the absolute structure in direct methods, the

comparison of equivalent descriptions of crystal structures, the

choice of a setting for indexing a diffraction pattern, the choice

for indexing morphological faces of a crystal, the inter-

changeability of Wyckoff positions, and the definition of

lattice complexes. Chapter 15 in ITA gives an extensive

presentation of the application of normalizers.

To understand what a normalizer is and how it works, the

concepts of conjugacy and of normal subgroup have to be

recalled first.

(i) Conjugacy is an equivalence relation that partitions a

space group into equivalence classes. If g1 and g2 are two

elements of a space group G, they are called conjugate if there

exists an element g3 in G such that g3g1g�1
3 = g2. The equiva-

lence class that contains the element g1 in G is formed by all

elements of G obtained by g3g1g�1
3 for all g3 belonging to G.

(ii) In general, the structure of a group is not commutative:

if g1 and g2 are two elements of a group G, g1g2 6¼ g2g1. One

can however always choose a subgroup H of G such that, for

any element g of G and for all elements h of H, gh = hg holds.

The subgroup H is called a normal subgroup of G (in symbols,

H$ G) and the above condition is synthetically written as

gH = Hg or gHg�1 = H. That such a group always exists is

evident if one considers that at least the trivial subgroup

composed of the identity only is a normal subgroup of any
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group. For space groups, a group of type P1 containing all

translations of G is a normal subgroup of G.

A group G and one of its supergroups S are uniquely

related to a third, intermediate, group NS(G), called the

normalizer of G with respect to S. NS(G) is defined as the set of

all elements s of S that map G onto itself by conjugation, i.e. all

the elements s of S such that sgs�1 = g0, for all g and g0

belonging to G; this condition is synthetically written as

sGs�1 = G. Two limiting cases may exist, namely: (ii) the

normalizer NS(G) coincides with G, i.e. the elements of S that

map G onto itself are just the elements of G; (ii) the

normalizer NS(G) coincides with S, i.e. all elements of S map G

onto itself. Evidently, G is always a normal subgroup of its

normalizer, a fact that explains the name ‘normalizer’ itself.

Two types of normalizers are useful in crystallographic

problems: Euclidean normalizers (also initially known as

Cheshire groups) and affine normalizers. The difference

between them is easily understood after recalling the corre-

sponding types of mappings (transformations or functions).

(i) An affine mapping is any mapping that preserves

collinearity and ratios of distances, while angles and lengths in

general are not kept constant. Geometric contraction, expan-

sion, dilation, reflection, rotation, shear, similarity transfor-

mations, spiral similarities and translation are all affine

transformations, as are their combinations.

(ii) A Euclidean mapping is a special case of affine mapping

that also keeps distances and angles.

The Euclidean and affine normalizers of a space group G

are the normalizers obtained by taking as supergroup S the

group of all Euclidean or affine mappings, E or A, respectively.

They are the set of all elements e of E or a of A that map G

onto itself by conjugation.

Each operation of the Euclidean normalizer NE(G) maps

the group G onto itself, and thus also the symmetry elements

of G: it represents the symmetry of the symmetry pattern. Fig. 5

shows the symmetry elements of a space group G of type P222

as well as the unit cell, in (001) projection. If we think of the

symmetry of the distribution of these symmetry elements, it is

easily shown that they repeat with symmetry NE(G) = Pmmm.

Moreover, the lattice translations in NE(G) are all halved with

respect to G. The Euclidean normalizer becomes however

more symmetric in the case of the specialized metric. If two of

the lattice parameters of G are equal (for example, a = b), then

a fourfold axis arises in NE(G) that relates the symmetry

elements of G: NE(G) is now of type P4/mmm. Finally, if

a = b = c, NE(G) becomes of type Pm�33m. The existence of

more than one type of Euclidean normalizer for the same type

of space group, depending on the metric, concerns the triclinic

and monoclinic space groups as well as 38 types of ortho-

rhombic groups, where two or three lattice directions may

interchange if the corresponding lattice parameters become

equal.

The affine normalizer NA(G), being defined by the group of

affine mappings, never depends on the metric and, when more

than one type of Euclidean normalizer NE(G) exists for the

groups of type G, the affine normalizer NA(G) always corre-

sponds to the highest-symmetry NE(G). In the above example,

NA(P222) = Pm�33m, a/2, b/2, c/2. One could say that the

symmetry of the symmetry elements of P222 for a general

metric becomes more symmetric under geometric contraction,

expansion, dilation, rotation . . . , i.e. under an affine mapping

that corresponds to modifying the lattice parameters towards

a specialized metric. This process is repeated until the highest

symmetry is obtained and the result is the affine normalizer.

Evidently, when only one Euclidean normalizer exists for a

space-group type, it coincides with the affine normalizer.

For monoclinic and triclinic space groups, the affine

normalizers are not symmetry groups and have to be described

by a matrix–column pair and the corresponding restrictions on

the coefficients.

Crystals belonging to space groups G whose factor group

G/T is isomorphic to a pyroelectric point group cannot have

their origin fixed with respect to some appropriate symmetry

element. The origin may be chosen at any point along one

direction (for space groups of crystal classes 2, 3, 4, 6, mm2,

3m, 4mm and 6mm), in a plane (crystal class m) or anywhere in

space (crystal class 1). The Euclidean normalizers for these

space groups are not space groups themselves but contain

continuous translations in one, two or three independent

directions.

As an example of the use of normalizers and of their rela-

tion with the lattice complexes described in the previous

section, we consider the position 12h x, 1
2, 0 in P�443m, already

discussed in dealing with lattice complexes. The point con-

figurations corresponding to this position, which has inherent

symmetry Pm�33m, form cube-octahedra around the sites of a
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Figure 5
Symmetry elements of a space group G of type P222 with the unit cell
shown in (001) projection (black). Depending on whether the metric of G
is general or specialized, the Euclidean normalizer is of type Pmmm,
P4/mmm or Pm�33m, with translations halved along the three axes. The unit
cell common to these three Euclidean normalizers is shown in red. The
symmetry elements of NE(G) = Pmmm are also shown in red. The
extension to the other two normalizers is obvious.



cubic primitive lattice. The Euclidean normalizer (which in

this case coincides with the affine normalizer) is NE(P�443m) =

Im�33m with identical translation subgroups. The additional

generator t(1
2

1
2

1
2) of NE(G) with respect to G generates a second

point configuration in the same Wyckoff position, and the two

are said to be Euclidean-equivalent (they are evidently also

affine-equivalent). There exist therefore two point configura-

tions by which the same atomic distribution can be described,

and only the other atoms in different Wyckoff positions define

which of the two is actually occupied in the structure under

investigation or, if both are occupied, by which atoms they are

occupied. If however x takes the value 1
4, the two point

configurations coalesce in one, with inherent symmetry Im�33m,

i.e. the symmetry of the normalizer.

When, for each crystallographically independent type of

atom there exist two or more Euclidean-equivalent point

configurations, the same crystal structure can be described

differently. To verify whether two apparently different crystal

structures actually simply differ in their description, it is

sufficient to verify whether the corresponding point con-

figurations are Euclidean-equivalent or not. The case of

crystals composed of only one type of atom is the simplest

example: when the only independent atom occupies one

Wyckoff position out of a Wyckoff set, i.e. a set of Wyckoff

positions having a site-symmetry group that is conjugate under

the Euclidean normalizer, then there are N � 1 alternate

equivalent descriptions, where N is the number of Wyckoff

positions in the Wyckoff set. Evidently, in the case of crystals

composed of only one type of atom, the Wyckoff position that

it occupies must correspond to a characteristic orbit (E = G).

An exhaustive presentation of normalizers, with several

examples, is given in Chapter 15 of ITA and references

therein. A didactic text has been published by Koch & Fischer

(2006).

5. Derivative structures and symmetry relations

A derivative structure is any structure derived from another

structure (basic structure) by the suppression of one or more

sets of operations of the space group (Buerger, 1947). Basic

structures are also known as aristotypes and derivative struc-

tures as hettotypes (Megaw, 1973). Two important kinds of

derivative structures exist: substitution structures and distor-

tion structures. In the former, two or more different kinds of

atoms replace one kind of atom in the basic structure and

consequently the space-group symmetry decreases; further-

more, some atomic sites that were equivalent in the basic

structure may be divided into two or more different sites in

the derivative structure. Distortion structures correspond to

displacive phase transitions: the space-group type of the

derivative structure, often called daughter phase, is a subgroup

of the space-group type of the basic structure, often called

parent phase.

The structure relationship between two structures whose

space groups G and H are group–subgroup related (G � H)

can be analysed in terms of maximal subgroups. H is called a

maximal subgroup of G if one cannot find an intermediate

group K that is a subgroup of G and a supergroup of H. The

relations between G and H can be classified in the following

way:

1. H is a translationengleiche subgroup of G (t subgroup);

2. H is a klassengleiche subgroup of G (k subgroup),

2.1 a special case of k subgroup is when H belongs to the

same type as G: it is called an isomorphic subgroup of G and is

sometimes indicated as an i subgroup;6

3. H can finally be a general subgroup of G, i.e. its trans-

lation subgroup is a subgroup of the translation subgroup of G

and it also belongs to a crystal class that corresponds to a

subgroup of the crystal class of G. In this case, Hermann’s

(1929) theorem shows that there exists a unique intermediate

group M, which is a t-subgroup of G such that H is a

k-subgroup of M, and suggests a privileged path from

G to H.

The relation between G and H can eventually be subdivided

into a number of steps G! H1! H2! . . . ! H, each step

involving either a k-subgroup or a t-subgroup. At each step, a

Wyckoff position can either split into several symmetry-

independent positions, which keep the original site symmetry,

or have its site symmetry reduced; both changes may also

happen simultaneously (Wondratschek, 1993). In a substitu-

tion structure, the Wyckoff position may split, whereas, in a

distortion structure, the site symmetry in general is reduced

when going from Hj to Hj+1, unless it is already low enough

(Müller, 2005). Vol. A of International Tables for Crystal-

lography gives part of the information necessary to build the

relation, namely the maximal non-isomorphic subgroups and

the isomorphic subgroups of lowest index. International Tables

for Crystallography (2004), Vol. A1, which was published

recently, gives the complete information: besides the above

subgroups, it also gives the series of isomorphic subgroups, the

origin shift relating the axial settings of G and H and the

transformation of each Wyckoff position.

The structural relation is best represented in the form of a

tree, introduced by Bärnighausen (1980), where each node

consists of a group and the Wyckoff letter of the occupied

positions, with the numerical values of the general coordi-

nates, and the branches are arrows relating pairs of groups,

labelled by the type of subgroup (t, k, i), the order of the

subgroup, followed – when these are not trivial – by the basis

vectors of the subgroup in terms of those of the supergroup

and by the origin shift.

The information necessary to build a Bärnighausen tree can

be obtained either from Vol. A1 of International Tables for

Crystallography or by means of the Bilbao Crystallographic

Server at http://www.cryst.ehu.es/cryst/ (Aroyo, Perez-Mato

et al., 2006; Aroyo, Kirov et al., 2006), in particular,

using the routines SUBGROUPGRAPH, HERMANN and

WYCKSPLIT.
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5.1. The example of the diamond–sphalerite–chalcopyrite
substitution derivative structure

From the space group of diamond (Fd�33m) to that of chal-

copyrite (I�442d), two shortest paths exist, Fd�33m ! F�443m !

I�44m2 ! P�44n2 ! I�442d and Fd�33m ! I41/amd ! I�44m2 !

P�44n2! I�442d. The first one passes through the space group of

sphalerite (F�443m). As a matter of fact, the structural relation

can be separated into two steps: first, by replacing half of the C

atoms by Zn atoms and the other half by S atoms, one obtains

the structure of sphalerite; then, by further ordered replace-

ment of Zn by Fe and Cu atoms, one gets the structure of

chalcopyrite.

The first passage is straightforward, involving just a

t-subgroup of order 2. Diamond has lattice parameter a =

3.566990 (3) Å (Hom et al., 1975). With respect to ‘origin

choice 1’, the C atoms occupy the position 8a (0, 0, 0), whose

site-symmetry group is �443m. The transformation to F�443m

needs an origin shift by (�1/8,�1/8,�1/8). The position 8a of

F�443m splits to 4a (0, 0, 0) and 4c (1/4, 1/4, 1/4) of F�443m, but

keeps the site-symmetry group, �443m. The lattice parameter of

sphalerite is 5.415 (9) Å (Jumpertz, 1955); the large difference

in the lattice parameters comes evidently from the size

difference between the C atom on one side and the Zn and S

atoms on the other side.

To obtain the chalcopyrite structure, a three-step pathway is

needed.

I. F�443m! I�44m2. I�44m2 is a t-subgroup of order 3 of F�443m.

The transformation can be done in three different ways, which

correspond to three conjugate subgroups, depending on which

of the three fourfold axes of the parent group is left in the

subgroup. If we keep the one along the c axis, the transfor-

mation is obtained by 1
2(a � b), 1

2(a + b), c, the origin being in

common: the calculated lattice parameters become a = 3.829

and c = 5.415 Å. The Wyckoff positions occupied in F�443m do

not split, keep the same Wyckoff letter, but reduce their site

symmetry to �44m2 and their multiplicity from 4 to 2: 2a (0, 0, 0)

and 2c (0 1
2

1
4).

II. I�44m2 ! P�44n2. The second group is a k-subgroup of

order 2 of the parent group. Computed lattice parameters and

Wyckoff positions remain the same but the site symmetry is

reduced to �44..; the centring vector I is lost.

III. P�44n2 ! I�442d. The second group is a k-subgroup of

order 2 of the parent group. The transformation is obtained by

(a � b), (a + b), 2c and the origin is in common; the computed

lattice parameters become a = 5.415 , c = 10.830 Å. Wyckoff

positions 2a (000) and 2c (0 1
2

1
4) of P�44n2 become 4a (000) and

8d (1
4

1
4

1
8). Moreover, because the lattice parameter along c has

doubled, a second set of atomic positions must be added,

obtained from the first set by addition of (00 1
2). From 4a (000),

position 4b (00 1
2) is thus obtained; from 2c (0 1

2
1
4), position (1

4
1
4

5
8)

is obtained, which corresponds again to 8d.

The chalcopyrite lattice parameters are a = 5.2864 (8) and

c = 10.4102 (8) Å (Kratz & Fuess, 1989), close to those

calculated by the group–subgroup transformation; the differ-

ence comes obviously from the different size of the atoms

which substitute in the derived structure. The atomic coordi-

nates are Cu: 0, 0, 0 (4a), Fe: 0, 0, 1
2 (4b) and S: 0.257 (1), 1

4,
1
8

(8d). The generic coordinate x in position 8d is fairly close to

the value 1
4 obtained via the transition pathway. The

Bärnighausen tree for the complete group–subgroup is shown

in Fig. 6.

Detailed examples of applications of Bärnighausen trees

are given in Müller (2004, 2005). Application to molecular

crystals can be found in Gruber & Müller (1997) and Müller

(1978, 1980). Rutherford (2001) presented the first application

to organic crystals.

5.2. Structural relationships between structures with no
group–subgroup relations

In the case of structures with no group–subgroup relations,

the structure of one phase can still be related to that of the

other phase via a common supergroup (see e.g. Bärnighausen,

1980; Hoffmann & Pöttgen, 2001), without necessarily

implying the existence of a transition pathway. The possibility

of using a common subgroup instead has been suggested too

(see e.g. Capillas et al., 2007). The group–subgroup relation
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Bärnighausen tree for the diamond–sphalerite–chalcopyrite pathway.



would then concern G1 and H1, as well as G2 and H2, where

H1 and H2 are space groups of the same type as H. Finally, an

affine transformation relating H1 and H on one side, and H2

and H on the other side, closes the structural relation.

6. Reticular theory of twinning

A twin is a modular structure at the crystal level (Ferraris et al.,

2004), i.e. a heterogeneous edifice consisting of the oriented

association of two or more homogeneous crystals (indivi-

duals). The operation mapping the orientation of an individual

onto that of another individual is called a twin operation and

the lattice element about which this operation is performed is

called a twin element. Mallard’s law (Friedel, 1926) states that

a twin element is always a direct-lattice element, although it

may sometimes be useful to use a reciprocal-lattice element

instead, especially when unravelling the diffraction pattern of

a twin.

Twinning is often simply regarded as a problem in the

process of structure solution and refinement because the

measured intensities no longer come from a single crystal but

from a heterogeneous edifice built by two or more crystals.

Twinning represents however a most interesting subject of

investigation, also for the light that twinned crystals may shed

on crystal growth mechanisms. The subject is extremely wide

and some recent reviews have been published (see e.g. Hahn &

Klapper, 2003 and Grimmer & Nespolo, 2006). Here we give

just a brief summary of the aspects that from the viewpoint of

mathematical crystallography are more directly related to the

above problems.

6.1. The reticular theory of twinning and the occurrence
frequency of twins

In order for two individuals of the same compound to form

a twin, the structure at the interface between them should fit

as well as possible. Holser (1958) proposed to describe this

interface by means of the 80 diperiodic (layer) groups: the

intersection of the space groups of the individuals in the

respective orientations should be a diperiodic group realized

in the thin interface between them. This approach requires the

knowledge of a thin section of the structure for the given

orientation and a way to judge the goodness of fit, almost

reducing the study of twins to a case-by-case analysis.

The reticular theory of twins, originally developed by the

so-called ‘French school’ (Friedel, 1926) takes the lattice as

basic criterion to judge the goodness of fit and, consequently,

to evaluate the probability of occurrence of a twin. Clearly, the

use of the lattice instead of the complete structure results in a

certain degree of idealization; on the other hand, it has the

advantage of a much greater generality, while keeping the

specificity of the individuals, through their lattice parameters.

Concretely, the reticular theory of twins affirms that the

probability of occurrence of a twin is directly related to the

goodness of fit of the lattices of the individuals in the

respective orientations (see also Hahn & Klapper, 2003).

Because the structure of a crystal is a periodic repetition of the

unit-cell content with the periodicity of the lattice, a good fit of

the latter implies a good structural fit. The lattice nodes that

are common, exactly or approximately, to the individuals in

their respective orientations define a sublattice of the indi-

vidual, which is called twin lattice. As ‘goodness of fit’ is taken

the degree of lattice overlap in the twin lattice, as measured by

two parameters:

1. the ratio of the volume of the primitive cells of the twin

and of the individual, which corresponds to the twin index n;

for twofold twin operations, it is easily computed from the

indices of the lattice elements defining the twin lattice; in the

other cases, the calculation may be less straightforward

(Nespolo & Ferraris, 2007);

2. the divergence from the exact overlap of the lattices of

the individuals, which is related to the pseudosymmetry of the

twin lattice; this is usually measured by the obliquity !, i.e. (a)

for reflection twins, the angle between the normal to the twin

plane (which, in general, is an irrational direction) and the

lattice direction closest to it, (b) for rotation twins, the angle

between the twin axis and the direction, in general irrational,

that is normal to the lattice plane that is quasi-normal to the

twin axis. When the twin operation is of order higher than 2, a

pseudosymmetry of the twin lattice may no longer result in ! >

0; a more general parameter, called twin misfit �, has thus been

introduced as a measure of this pseudosymmetry, which is

defined as the distance between the first nodes along the two

shortest directions in the plane of the twin lattice (quasi-)

perpendicular to the twin axis, which are quasi-restored by the

twin operation (Nespolo & Ferraris, 2007).

On the basis of these parameters, twins are classified in the

following categories, where � replaces ! in older classifica-

tions:

1. n = 1, � = 0: twins by merohedry

2. n > 1, � = 0: twins by reticular merohedry

3. n = 1, � > 0: twins by pseudo-merohedry

4. n > 1, � > 0: twins by reticular pseudo-merohedry.

Twins by merohedry are also often called ‘merohedric

twins.7

The occurrence of twins with twin index >1 shows that for a

twin to occur a complete overlap of the lattices is not neces-

sary: a partial overlap is sufficient. The occurrence of twins

with obliquity ! > 0 (and thus � > 0) shows that for a twin to

occur an exact overlap of the lattices is not necessary: an

approximate overlap is sufficient. Nevertheless, in general, the

probability of occurrence of a twin is inversely related to the

twin index and to the obliquity, and empirical limits were also

given, based on a large number of study cases: a twin index of

6 and an obliquity of 6� were taken as borderline between

‘normal’ (‘Friedelian’) twins and ‘exceptional’ (‘non-Friedel-

ian’) twins (Friedel, 1926).

That the above criteria are not absolute is shown by the

existence of non-Friedelian twins that, although far less

frequent than low-index low-obliquity ones, are nevertheless
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well represented. The reticular theory seemed unable to

explain their occurrence in the same framework as Friedelian

twins. An extension of this theory has however been proposed

that rationalizes a number of non-Friedelian twins as hybrid

twins. For n > 1 twins, the twin lattice is a sublattice of the

lattice of the individual whose cell is defined by the twin

element (axis, plane) and the lattice element (plane, direction)

quasi-perpendicular to it, where ‘quasi’ means within an

acceptable obliquity, usually taken as the Friedelian value of

6�. For large twin index, there may exist more than one lattice

element satisfying this criterion, and therefore more than one

sublattice that may be chosen as twin lattice. The overall

degree of lattice overlap should therefore take into account

the lattice nodes defining all these sublattices because the twin

operation restores all these nodes, although within a different

degree of approximation, measured by the obliquity of each

sublattice. The ratio of the lattice nodes contained in the cell

of the lowest-obliquity largest-index sublattice and the

number of lattice nodes corresponding to all the sublattices

defined in this way is a better estimation of the degree of

lattice overlap and is termed effective twin index. By means of

this approach, several high-index twins whose existence was

previously difficult to explain on the basis of the reticular

theory can now be rationalized as well (Nespolo & Ferraris,

2006).

6.2. Twin point groups and the polychromatic symmetry of
twins

The symmetry of twins is in vector space, exactly like the

morphological symmetry of crystals or the symmetry of their

physical properties. Therefore, the symmetry of a twin is

described by a (vector) point group, which however is not just

one of the 32 crystallographic point groups but rather an

extension of them.

The symmetry of a twin is the group formed by the inter-

section of the oriented point groups of the individuals

augmented by the twin element(s). In the intersection group,

only those symmetry elements are retained that, in the

respective orientations of the individuals, are parallel. This

gives a subgroup, proper or trivial, of the group of the indi-

vidual. The twin element(s), as well as those produced by the

combination of the latter(s) with the symmetry elements of the

intersection group, are then added and the complete symmetry

of the twin is obtained. In this group, the operations no longer

have the same nature: part of them map an individual onto

itself, the others map an individual onto another one. This

behaviour has an evident parallel in the polychromatic point

groups, where some operations (‘achromatic’) exchange only

parts of the object characterized by the same colour; others

(‘chromatic’) exchange instead parts that have different

colours; finally, a third type of operation (‘partially chromatic’)

may exist, which exchanges a subset of the colours, leaving

unchanged the others. The theory of polychromatic point

groups can therefore be directly applied to twinned crystals; a

polychromatic point group applied to a twin takes the name

‘twin point group’ (Nespolo, 2004).

In the case of merohedric twins, the twin point group is

evidently isomorphic to a supergroup of the crystal point

group8 because all the symmetry elements of the individual

are retained in the intersection group. In the general case,

however, this is no longer true, the twin point group often

being isomorphic to a subgroup of the crystal point group or

even to a point group that is not in group–subgroup relation

with it. In fact, depending on the orientation of the individuals,

few or none of the symmetry elements of the individual may

be retained, and the twin element may be of a type not present

in the point group of the individual. For example, the Japan/

Verespatak twin of quartz, f11�222g, has twin point group m0:

none of the symmetry elements of the 321/622 point group of

quartz is retained, and there are no mirror planes in it. A

further specialized case is that when the twin element is of the

same type as the symmetry element lost in the intersection

group. In this case, the twin point group is isomorphic to the

crystal point group, the two groups being however differently

oriented. For such a special case, the term of twinning by

reticular polyholohedry was introduced (Nespolo & Ferraris,

2004).

6.3. The effect of twinning on the diffraction pattern

The diffraction pattern from a twinned crystal is typically

the superposition of the diffraction patterns of the individuals.

In other words, the intensities from each individual sum up

without any phase relation. This of course depends on the

crystal size and the wavelength used, and the diffraction

behaviour cannot be used as an absolute criterion to distin-

guish between a twin and a modular structure (see the

discussion in Nespolo et al., 2004). Nevertheless, in a large

majority of cases, non-interfering diffraction from the indi-

viduals is what one observes from a twinned crystal. This

means that, in order to solve and refine the structure of a

twinned crystal, the diffraction pattern must first of all be

unravelled for its components.

Twins by merohedry have their direct and reciprocal lattices

completely overlapped. They are classified into three classes

(Catti & Ferraris, 1976; Nespolo & Ferraris, 2000).

Class I: the twin operation is an inversion centre (or any

other operation that is equivalent to an inversion centre under

the point group of the individual). Within the limits of the

validity of Friedel’s law, the diffraction pattern from the twin

cannot be distinguished from that of a single untwinned

individual and the structure can be solved without taking

twinning into account, provided that the correct space group

has been chosen; assignment of a crystal to a centrosymmetric

space group when instead it lacks the centre of symmetry

probably results only in apparent disorder or abnormal

displacement parameters if the structure is to some extent

pseudosymmetric. When the volume ratio of the individuals is

sufficiently different from 1, the presence of inversion twin-
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ning can be investigated by means of the Bijovet intensity

ratio (Flack & Shmueli, 2007).

Class IIA: the twin operation does not belong to the Laue

class of the crystal. The presence of twinning may hinder a

correct derivation of the symmetry from the diffraction

pattern. In particular, when the number of individuals co-

incides with the order of the twin operation and the volumes

of the individuals are equal, the symmetry of the diffraction

pattern is higher than the Laue symmetry of the individual. A

wrong space group can thus be assumed in the initial stage

of the structure solution. The presence of twinning can be

investigated by statistical analysis of the intensities (Rees,

1980).

Class IIB: the situation is similar to that of class IIA but now

the crystal has a specialized metric and the twin operation

belongs to symmetry operations of the lattice corresponding

to this specialized metric, not to that of the crystal holohedry.

For example, in a monoclinic crystal with � = 90�, the twin

element is a twofold axis parallel to [100] or [001] or a mirror

plane normal to one of these directions. This type of twinning

has been called ‘metric merohedry’ (Nespolo & Ferraris, 2000)

or ‘higher-order merohedry’ (Friedel, 1926).

Common to these three classes is that, following the perfect

overlap of reciprocal lattices, the diffraction pattern from

twins does not show special reflection conditions, with the

exception of crystals with space group of type Pa�33 (Koch,

1999).

Twins by reticular merohedry are characterized by partial

overlap of the lattices of the individuals. As a consequence,

special reflection conditions, corresponding to non-space-

group absences, are commonly observed in the diffraction

pattern. This is among the strongest alerts for the presence of

twinning, although it does not uniquely come from twinning:

OD structures, for example, also give non-space-group

absences, typically along family rows indexed in the polytype

axial setting.

Twins by (reticular) pseudo-merohedry show diffraction

splitting, which is more pronounced at high angles. The degree

of splitting depends on the twin misfit and for very low values

it may not be observable, resulting at most in a slight en-

largement of the diffractions.

7. Topology of crystal structures

The term topology is used with different meanings in crystal

chemistry. For example, an affine transformation connecting

the structure of two polymorphs related by a displacive

transformation can be described in topological terms, although

the connectivity is modified because the number of bonds is

not necessarily the same in the two structures. Here we use the

term topology in a narrower sense, with reference to the

connectivity of a crystal structure, i.e. the way in which the

atoms are connected to each other. The latter, reduced to its

minimal terms, is a set of atoms joined in a more or less

complex way along privileged directions that we call chemical

bonds. In the case of completely ionic structures, the bond

itself is not directional but the packing of ions determines

directions of minimal distances between ions of opposite

charge, and these can be taken as ‘privileged directions’. A

crystal structure can therefore be seen as a set of vertices

(atoms) and edges (bonds) and is describable as an infinite

undirected9 graph embedded into the three-dimensional point

Euclidean space: it is called a crystal structure graph. There

exists an isomorphism between the elements of the space

group of the crystal structure (isometries) and the group of

automorphisms of the crystal structure graph.10 Graph theory

is commonly applied in chemistry to molecules. Its power-

fulness in the analysis, description and foresight of crystal

structures was realized only later.

The famous study of the Seven Bridges of Königsberg is

regarded as the first paper in the history of graph theory

(Euler, 1736). Euler’s formula relating the number of edges,

vertices and faces of a convex polyhedron was studied and

generalized by Cauchy (1813) and L’Huillier (1861) and is at

the origin of topology. Cayley (1875) developed the study of

trees and linked his results with the contemporary studies of

chemical composition. The fusion of the ideas coming from

mathematics with those coming from chemistry is at the origin

of a part of the standard terminology of graph theory. In

particular, the term graph was introduced by the chemist

Sylvester (1878a,b).

An instructive example of the application of graph theory

to the analysis of crystal structures is the determination of

isostructural compounds. As mentioned in the section about

normalizers, the same crystal structure may sometimes be

described in different ways, and to verify whether two

apparently different crystal structures actually simply differ in

their description it is sufficient to verify whether the corre-

sponding point configurations are Euclidean-equivalent or

not. We can generalize this concept to the case of different

compounds whose crystal structures have the same topology.

To reveal this relation, one has first of all to establish a

mapping between atoms or groups of atoms, then verify

whether the corresponding point configurations are affine-

equivalent or not. One of the structures compared may turn

out to be a derivative of the other, as is the case of the

diamond–sphalerite–chalcopyrite described in the previous

section. Graph theory is a powerful tool in such a task: once

the mapping of atoms has been established, the bond pattern

of the structures under consideration is translated into the

corresponding crystal-structure graph. It is therefore the

mapping of a graph onto another graph that can reveal

whether two structures are isomorphic, derivative or unre-

lated. Two types of mappings between graphs should be

considered:

1. homeomorphism, which is an isomorphism between

spaces that respects topological properties; in particular, it

maps neighbour points and distant points in one space on

neighbour points and distant points, respectively, in the other
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space; in other words, homeomorphism is a continuous

invertible bijective deformation between two topological

spaces;

2. homomorphism, which is a relation between graphs

preserving the operations; the special case of isomorphism, or

bijective homomorphism, is of particular interest here.

Through homeomorphism, it can be shown that crystal

graphs are topologically equivalent to a potentially enumer-

able set of fundamental nets (see e.g. Delgado-Friedrichs &

O’Keeffe, 2003). Then, the search for isostructurality reduces

to establishing a graph isomorphism, which can be obtained by

finding some graph invariants. A typical example of such an

invariant is the quotient graph. A finite quotient graph is

obtained from an infinite structure graph by finding transla-

tionally equivalent points (atoms) and lines (bonds) and

preserving their incidence relations. The result is called a

quotient graph because it is analogous to the quotient (factor)

group G/T between a space group and its translation

subgroup. The quotient graph retains the whole connectivity

of the structure graph, namely the information about which

point lattices are connected to each other by how many lines;

however, the information about which individual point of a

given lattice is joined to which individual point of another

lattice is lost. As a consequence, different non-isomorphic

graphs may have the same quotient graph (Klee, 1987). A

system of labels can however be assigned to the edges in such a

way that it uniquely determines the infinite structure up to

isomorphism via the so-called vector method (Chung et al.,

1984). This opens the possibility of an algebraic representation

of the quotient graph, which makes it possible to translate the

process of comparing crystal structures into a symbolic

computer language.

A graph can be represented by its adjacency matrix, which is

a real square symmetric matrix with a row and a column for

each vertex of the graph. The element corresponding to the ith

row and the jth column gives the number of edges by which

the two corresponding vertices are joined. Because the

numbering of vertices is not unique, the adjacency matrix can

be written in different ways, which differ by permutation of

rows and/or columns, but do not affect the invariants of the

matrix, such as determinant, trace and its eigenvalues. The

latter are said to form the spectrum of the graph. The adja-

cency matrix is however not uniquely determined by the

spectrum of its eigenvalues and, as a consequence, non-

isomorphic graphs with the same spectral values may be

found, which are called cospectral (Klee, 1987). The com-

parison of the spectra of the graph of two crystal structures is,

alone, in general not sufficient to state that the two structures

are isomorphic but it is sufficient to exclude that they are: a

number of examples can be found in Eon (1998). Other graph

invariants as possible means to establish isomorphism are

presented in Eon (2002).

It must be emphasized that, in order to build a structure

graph, the coordination number of each atom in the structure

must be uniquely defined and known. This is not always the

case, especially when a clear division between the first and

second coordination spheres does not exist. The concept of

coordination number itself has been the object of critical

considerations (Hoppe, 1970) and generalizations (Hoppe,

1979; O’Keeffe, 1979). To judge up to what distance an atom

still coordinates with its neighbours, or the closely related

question of accounting for the bond-length distribution in

irregular coordination polyhedra, different methods have

been proposed, such as bond valence (see a review in Urusov,

1995), resonance bond number (Boisen et al., 1988; Ruther-

ford, 1991, 1998a) and charge distribution (Hoppe et al., 1989;

Nespolo et al., 1999, 2001).

Several applications of graph theory to crystal-chemical

problems can be mentioned, like the analysis of possible

polymorphs by means of Schlegel diagrams (Hoppe & Köhler,

1988) and the problem of finding atomic configurations satis-

fying neighbour-avoidance rules. The aluminium-avoidance

rules in tetrahedra of aluminosilicates (Löwenstein, 1954) is an

empirical rule subject to exceptions (Depmeier & Peters,

2004). Although far from being a general law of Nature, it is

respected in a large number of structures. A graph-theoretical

approach to the study of the distribution of Al and Si in a

given structure according to this empirical rule was presented

by Klee (1974a,b). A similar problem was addressed by

Rutherford (1998b) to show that, in the one-dimensional ionic

conductor [(CH3)2N(CH2CH2)2O]Ag4I5, the energy of the

system is minimized when Ag ions do not occupy neigh-

bouring tetrahedra.

An exhaustive presentation of the applications of graph

theory to crystallography and crystal chemistry will soon be

available (Eon et al., 2008).

8. Conclusions

Mathematical crystallography, far from having exhausted its

task with the development of the space-group theory, not only

represents one of the foundations of crystallography but is still

a very active field of research, which nowadays extends its

interests to cover several branches that were previously

seldom considered in their interactions with crystallographic

and crystal-chemical problems. This brief survey was limited to

only some of the main topics of mathematical crystallography,

but quite a few others, mentioned only en passant, like higher-

dimensional crystallography and topology of non-Euclidean

spaces, would have deserved a presentation as well. The

reader is encouraged to follow the activities of the IUCr

Commissions like MaThCryst and the Commission on

Aperiodic Crystals to obtain a wider view of current and

future developments in mathematical crystallography.
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